1,706 research outputs found

    Infaunal Marsh Foraminifera From the Outer Banks, North Carolina, USA

    Get PDF
    The distribution and abundance of live (rose Bengal stained) and dead, shallow infaunal (0–1 cm depth) and deep infaunal (\u3e1 cm depth) benthic foraminifera have been documented at three locations representing different salinity settings on the fringing marshes along the Pamlico Sound and Currituck Sound coasts of North Carolina’s Outer Banks. Two cores taken at each site represent the lower and higher marsh. Twenty-two taxa were recorded as live. Of these, eight taxa were found only at shallow infaunal depths; the other 14 taxa occur at deep infaunal depths in one or more cores. Only Jadammina macrescens and Tiphotrocha comprimata were recorded as living in all six cores. The distributions of the other taxa were restricted by combinations of infaunal depth, salinity regime and location on the marsh. The tests of infaunal foraminifera were generally more likely to be preserved in the lower marsh than the higher marsh at low- and intermediate-salinity sites. The opposite pattern was evident at the high-salinity site but this may be due to the low numbers of deep infaunal specimens recovered. Arenoparrella mexicana, Haplophragmoides wilberti, Jadammina macrescens and Trochammina inflata are the most resistant taxa, whereas Miliammina fusca is the species whose tests are most likely to be lost to post-mortem degradation. In five of the six cores, foraminiferal assemblages and populations do not differ significantly with depth which suggests that the foraminifera of the 0–1 cm depth interval provide an adequate model upon which paleoenvironmental (including former sea level) reconstructions can be based

    Brain Specificity of Diffuse Optical Imaging: Improvements from Superficial Signal Regression and Tomography

    Get PDF
    Functional near infrared spectroscopy (fNIRS) is a portable monitor of cerebral hemodynamics with wide clinical potential. However, in fNIRS, the vascular signal from the brain is often obscured by vascular signals present in the scalp and skull. In this paper, we evaluate two methods for improving in vivo data from adult human subjects through the use of high-density diffuse optical tomography (DOT). First, we test whether we can extend superficial regression methods (which utilize the multiple source–detector pair separations) from sparse optode arrays to application with DOT imaging arrays. In order to accomplish this goal, we modify the method to remove physiological artifacts from deeper sampling channels using an average of shallow measurements. Second, DOT provides three-dimensional image reconstructions and should explicitly separate different tissue layers. We test whether DOT's depth-sectioning can completely remove superficial physiological artifacts. Herein, we assess improvements in signal quality and reproducibility due to these methods using a well-characterized visual paradigm and our high-density DOT system. Both approaches remove noise from the data, resulting in cleaner imaging and more consistent hemodynamic responses. Additionally, the two methods act synergistically, with greater improvements when the approaches are used together

    Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level

    Get PDF
    We collected modern diatom samples from Currituck Barrier Island, Oregon Inlet and Pea Island marshes, Outer Banks, North Carolina, USA, which have different salinity regimes due to their varying distances from a major barrier island inlet. Multivariate analyses separate the saltmarsh diatom assemblages into distinct elevational zones, dominated by differing abundances of polyhalobous, mesohalobous and oligohalobous taxa, suggesting that the distribution of saltmarsh diatoms is a direct function of elevation, with the most important controlling factors being the duration and frequency of subaerial exposure. We developed the first diatom-based transfer function for the east coast of North America to reconstruct former sea levels based upon the relationship between diatom assemblage and elevation. Results imply that this is possible to a precision of ±0.08 m, superior to most similar studies from temperate, mid-latitude environments. The transfer function is used to construct a relative sea-level curve from fossil assemblages from Salvo, North Carolina. These results suggest a sea-level rise of 0.7 m over the last c. 150 years, at an average of c. 3.7 mm year−1. This is consistent with existing sea-level data, and illustrates the utility of the transfer function approach
    • …
    corecore